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COMPUTATIONAL STUDY OF FLOW IN A CURVED PIPE
WITH CIRCULAR CROSS SECTION

Susumu Shirayama* and Kunio Kuwahara**
(Received March 10, 1987)

Laminar imcompressible flows in a circular sectioned pipe were investigated by seeking numerical solutions to the
Navier-Stokes equations. Three semi-circular pipes of radius ratios 0.05, 0.143 and 0.148 were studied. These calculations
covered the Dean number ranging from 183 to 3847. In the range of low and medium Dean numbers, a steady-state solution
was obtained ; when the Dean number was high, a three-dimensional separation and the associated secondary flow were
clearly cbserved far downstream near the outlet. Extensive flow visualizations were made to depict the computed results.
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1. INTRODUCTION

The flow in a curved pipe has been of considerable interest
to the fluid mechanicians. Among others, a proper understan-
ding of the complicated secondary motions in the cross-
sectional plane is necessary for design and operation of a
multitude of fluid machinery. One important parameter for
this flow is the Dean number, which can be defined by the
curvature of the pipe and the Reynolds number. When the
Dean number is relatively low (say, less than 700), the
structure of the secondary flow has been examined previous-
ly by experimental as well as analytical and theoretical
investigations. The existence of the secondary flow has been
verified by the previous studies. Some experiments demon-
strated bifurcation or separation of the secondary flow (see,
Agrawal et al.. 1978). Although some numerical results were
suggestive of such phenomena (Nandakumar et al, 1982;
Humphrey et 2l., 1985), the majority of the numerical studies
were unable to describe cleary such interesting flow features.
This difficulty in the numerical works is believed to stem
from the fact rhat the numerical models have mostly relied
on approximate equations. When the Dean number is high,
the flow may become unsteady, and separation may take
place. For a comprehensive depiction of the flow, therefore,
it will be highly desirable to solve the full, time-dependent
Navier-Stokes equations.

In the present paper, the incompressible Navier-Stokes
equations were solved by using a sufficient number of grid
points. Computations were made for the flow in a circular-
sectioned pipe with straight inlet and outlet. The flow details
were illustrated by an extensive use of the computational
flow visualization techniques incorporating a three-
dimensional color graphics system.

2. METHOD OF APPROACH

A finite-difference procedure was applied to solve the
three-dimensicnal incompressible Navier-Stokes equations
written in a generalized coordinate system. In order to treat
the pressure, the Helmholtz decomposition was adopted.
(Chorin, 1968 ; Takami & Kuwahara, 1974) The resulting
pressure equarion was solved by the method of successive
over-relaxation. The Euler implicit scheme was selected for
the time integration. All the spatial derivatives except the
nonlinear terms were apporoximated by central differences.
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Fig. 1 Grid system.

The nonlinear terms were approximated by a third-order
upwind scheme(Kawamura & Kuwahara, 1985; Himeno et
al., 1985).

The computations were performed on the Japanese super-
computers, i.e., Fujitsu VP 200, VP 400 and NEC SX/2.

The grid layout is shown in Fig. 1. The equations were
solved in the generalized coordinate system. Along the
symmetric axis, the equations were solved in the cartesian
coordinate system. For an effective description of the
computed results, as was done by the previous studies, a
cylindrical coordinate frame (r,4,z) will be introduced to
cleary illuminate the flow details.

3. RESULTS

In the first, a case of low Dean number was dealt with. The
Reynolds number was Re=484, a/R=1/7, and the Dean
number De =183, and number of grid points was 79 x 25 X 35.
Figure 2 exemplifies the velocity distributions and pressure

Bl

Fig. 2 Vlelocity vectors and pressure contours in the Symmetric
plane.
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Fig. 3 Pressure contours in a cross-sectional plane.
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Fig. 4 Velocity profiles(¢component), particle paths in a cross-
sectional plane and velocity vectors (Re=484, De=183,
a/R=1/7).
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Fig. 5 Velocity vectors near the inlet.

contours in the symmetrical plane. Pressure contours at
different cross sections are shown in Fig. 3. The profiles of
the ¢-component of velocity, the particle paths, and the
velocity vectors in the cross-sectional plane are exhibited in
Fig. 4. Two recirculating regions, which are symmetric
about the center line, are discernible. These are referred to
as the secondary flow. Figure 5 shows the velocity distribu-
tions near the inlet and outlet. The streamwise velocity
profiles at t=100 are plotted in Fig. 6 (the upper diagrams),
and, for comparison purposes, the experimetal data (Agr-
awal et al, 1978) are included (the lower diagrams). The
profiles of the @-component of the secondary flow are
presented in Fig. 7.

In the second phase, three cases of computations were
made, encompassing the range of moderate Dean numbers ;

(i) Re=2527,a/R=1/20,De =565, grid points 119 x34 X 43 ;

(ii) Re=3032,a/R=1/20,De=678,gridpoints119 x 34 x43;

(iii) Re=:1764, a/R=1/7, De =678, grid points 99 X 34 X 38.

Figures 8 and 9 display the velocity profiles (the §-
component), particle paths, and velocity vectors in the cross-
sectional plane at t=0. It is now clear that a distinctive flow
pattern, known as the four-vortex soluzion (Nandakumar et
al., 1982), emerges. The streamwise velocity profiles at t=
100 are depicted in Fig. 10. Double velocity maxima along
some lines are apparent in the figures. The computational
results are in qualitative agreement with the experimental
data. The profiles of the secondary flows are shown in Fig.
11 which includes the corresponding experimental results.
The isovels of the streamwise velocity are plotted in Fig. 12.
Comparisons demonstrating the agreement between the
numerical predictions and the experimental measurements
are illustrated in Fig. 13 for the flow at 83° from the entry
when the Dean number is 565.

The highest Dean number for which the computations
were conducted was Re=10,000, a/R=0.148, Dean=23847,
grid points 161%35x41. Figure 14 contains the plots for
velocity distributions and pressure contours in the symmetry
plane. Figure 15 depicts the pressure contours at t=100 in
some cross-sectional planes. The particle paths and the
velocity vectors in a cross sectional plane at t=75 are shown
in Fig. 16. Fugure 17 shows the velocity profiles of the
secondary flows, particle paths, and velocity vectors in a
cross-sectional plane at t=100.
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Fig. 6 Streamwise velocity profiles. The lower figures: experiment of Agrawal et al.(1978).
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Fig. 7 Secondary-velocity profiles (¢ component). The lower figures: experiment of Agrawal et al.(1978).

The question of whether a two-or a four-vortex solution is
obtainable may be qualitatively answered as follows. It is
believed to be largely dependent on the response of a viscous
fluid element to the unbalance between the centripetal accel-
eration and the cross-sectional pressure gradient induced by
the lateral curvature of the main flow. However, it appears
that some of the recirculation regions are due to the separa-
tion of the main flow. Figure 18 exhibits the temporal
development of the velocity profiles near the outlet. The
main flow is seen to separate at t=100. Figure 19 displays
the pressure contours on the inside wall and the equi-
pressure surfaces near the outlet. The computed oil flow
patterns are sketched in Fig. 20.

In an effort to examine the details of the three-dimensional

separation, the flow field at t=100 is scrutinized by the aid
of computational flow visualization techniques. Figure 21 is
typical of the computed oil flow patterns and particle paths
in a cross-sectional plane. Figure 22 displays the computed
oil flow patterns at a location slightly downstream of the
point used for Fig. 20 (b). The vortical structures are clearly
identifiable by tracing the vortex lines; the same method
was employed by Kim & Moin(1986). Figure 23 represents
the vortex lines, which enable us to see the instantaneous
vortical structure. The location for the vortex lines in Fig. 23
(a) is slightly upstream of the one for Fig. 23 (b).

It may not be possible to attain a fundamental understand-
ing of the physics of these complex flows without efficient
visualizations techniques, both hardware and software.
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Fig. 11 Secondary-velocity profiles (¢ component); De=678, a/R=1/7. The lower figures: experiment of Agrawal et al.(1978).

Fig. 13 E?trzeamwise-velocity contours ; De=565,a/R=1/20, 6=
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Fig. 14 Velocity vectors and pressure contours in the symmetric
plane. Fig. 15 Pressure contours in a cross-sectional plane.
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(a) 8=90° (b) 8=150°

Fig. 16 Particle paths in a cross-sectional plane and velocity vectors at t=75. (Re=10000, De=23847, a/R=0.148)
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Fig. 17 Velocity profiles (¢ component), particle paths in a cross-sectional plane and velocity vectors at t=100.
(Re=10000, De=3847, a/R=0.148)
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Fig. 18 Time development of velocity distribution near the outlet.
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Fig. 19 Pressure contours on the inside wall and equi-pressure surfaces near the outlet
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Fig. 21 Computed oil flow pattern and particle paths in a

cross-sectional plane.
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Fig. 22 Comfnuted oil flow pattern.
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H In these computations, several different laminar-type solu-
i tions have been secured. In low-Dean-number flows, two
L symmetric recirculating regions appear and such secondary
H R motions induce the separation of cross-sectional flow as the
Dean number increases. Moreover, in high-Dean-number
g - flows, the separation of the main flow takes place and the
flow field becomes unsteady.

In order to investigate the structure of the secondary flow
as well as the main flow, it is highly effective to have
comprehesive flow visualization. Without suitable visualiza-
tion techniques (both hardware and software), we may not be
able to understand the physics of these complicated flows.
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Fig. 23 Vortex lines of an instantaneous vortex structure
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